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Abstract. The proposed development of the hole-polanzation concept of high-temperature 
superconductivityintrodufes bosonmodesdescribingsomedistortionsof unit cellsin which 
thebalanceofthechemicalvalenciesoftheconstituent ionsisbrokenso that thecopper ions 
are described by alternating vaIency. It is important that the modes in question are caused 
by dynamicalchargetransfer, Theyareassumedto berather high-frequencymodes, although 
there is an inner tendency to their softening. These boson modes lead to the Cooper pairing 
of holes in the oxygen conduction band. The intermediatecharacter ofthe relation between 
the valuesof the Fermi energy and the energy of the boson mode at hand is the origin of the 
strongdepressionof the isotopeeffect. Thecontribution ofthe channelofcoherent scattering 
of holes from hole donors exists in principle but seems to be small practically. The simplest 
case of lanthanumceramicsisconsidered. Two possible setsofthe valuesofthe parameters, 
which are in agreement with experiments. are discussed. 

1. Introduction 

In the last few years the phenomenon of high-temperature superconductivity [l] has 
undergone great experimental development. After ceramics based on yttrium [2], the 
new stable systems based on bismuth [3] and thallium [4], which are characterized by 
higher critical temperatures, have been obtained. There is also evidence in favour of the 
existence of metastable systems with much higher temperatures of the superconducting 
phase transition. A large number of theoretical constructions have been proposed to 
explain this phenomenon [SI, the majority of which are devoted to the investigation of 
non-phonon possibilities [6-9]. 

The capability of describing the appearance of a superconducting state in different 
up-to-date types of compound. beginning from the simplest ceramics based on lantha- 
num, on common grounds is an important requirement on the theory of high-tem- 
perature superconductivity. The theory in question must also take into account the 
essential properties of real materials such as typical structural anisotropy [lo], the hole 
type of conductivity normally intrinsic to these superconductors [ l l ]  and the strong 
depression of the isotope effect [12]. The most intriguing fact in these compounds is the 
presence of the Cu3+ state [13-181, leading to unusual local excitations [16.19]. We 
believe that the latter is crucial to all the problems. 

As a result of our efforts to couple together all the above peculiarities, the hole 
polarization concept of a given phenomenon has been formulated [2&23]. Within the 
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framework of this concept the main electronic properties are due to the process of hole 
transition from the oxygen valence band to the Cu’+ ions and vice versa which happens 
in unit cells where the balance between the valencies of the constituent ions is broken. 
In this case both the hole conductivity in  the oxygen band and the strong localization of 
the superconducting hole pairs are natural consequences of the model [SI. The present 
paper gives the further development of the idea of local hole polarization which is 
assumed to be the origin of specific boson modes of the vibronic type. These modes are 
local in space and are described by an energy without any dispersion. They are able to 
mediate the superconducting coupling. 

In the present paper we restrict ourselves to the discussion of lanthanum systems. In 
the case of the hole-polarization model. without considering any additional degrees of 
freedom, the channelof interaction via the boson modesat hand is predominant tvhereas 
a more accurate analysis shows that the coherent scattering of holes from the static hole 
donors discussed before [2&23] is depressed by other channels of scattering from the 
same donors and results only in a small correction to the main effect. It is also worth 
noting that the corresponding isotope effect is rather small. This peculiar feature of our 
present result is due to the rather high frequency of the boson modes. 

2. Model 

In the spirit of the representations in [2&23] we describe our system by the following 
Hamiltonian: 

ff = wkaioaho + v,((Bo - A p i ) b 3 , ,  + g(b&,, + + - + -). (1) 

Here the sum over the momenta k describes the hole oxygen band with the spectrum 
wk; U& and aka, respectively, are the creation and annihilation operators of a hole in the 
band; the summation over repeated spin indices a is assumed. The sum over i runs over 
all N unit cells of the crystal lattice. The value of v i  = 1 specifies donor unit cells where 
there is a deficiency of the cation valency due to either the presence of divalent metal 
ions or surplusoxygen ions there. In other unit cells, v i  = 0. In the site representation, 
b:, and b,  are the hole operators at donors; a:, and a;, are the band operators. g is the 
matrixelement of the hole transition from adonor to the band andviceversa. Bo - A q i  
is the energy of a hole at the ith donor, with the deformation response of the ith unit cell 
being taken into account. Owing to a random distribution of the donor unit cells, it is 
natural to  admit that localization of a hole residing at a donor occurs. In this case the 
general deformation state of a unit cell at the transition of a hole from the band to a 
donor and vice versa can be represented as the alternative existence of a unit cell in two 
potential wells [24.25], which are, for simplicity, supposed to be parabolic with the same 
curvatureh.Finally,inequation ( l ) .pis the reducedmassof ionsmovingin thisprocess 
of deformation; P, denotes the momentum canonically conjugate to the deformation 
variable q,. 

It is reasonable to suggest that the typical time of the hole transition between the 
band and a donor is much less than the characteristic times of the deformation. Thus, it 
is natural to describe the parabolic potentials, in which the deformation motion takes 
place, by their statistical weights determining the probabilities of their realization. 

P? AV* 
h ; 2 p  2 , 
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Inasmuch as the probability that a hole exists at a donor is experimentally much less than 
that in the band, the equilibrium point is shifted towards smaller values of pi. The 
appropriatemeanvalue(qi)isasusualdeterminedby thecondition that themeanenergy 
at the site containing a donor is a minimum. 

The diagonal hole part of Hamiltonian (1) arises when operators qi are replaced by 
(q), The transformation of this part of the Hamiltonian to a diagonal form has been 
discussed in detail in [21-231, where E = Bo - A ( 9 ) .  In the particular case when B is 
much larger than the band width of the spectrum w,, there is a single hole conduction 
band, which will be described by the operators EL,, and &,, as well as a narrow empty 
band with a relatively high mean energy, which is not essential for what follows. We 
also restrict ourselves to the case where Q = g / B  Q 1. This is natural inasmuch as 
the probability that the Cu3+ state in a donor unit cell is small experimentally and is 
determined by Q2 theoretically. The final Hamiltonian of free holes takes the form 

wheref, = w k  - EF,  E~ = cBQ2 is the Fermi energy and c = (17;) is the concentration of 
donor unit cells. The total Hamiltonian, which is essential for what follows and to which 
equation (1) is reduced, can be represented in the form 

H = Ha + Hint 

where 

Ha = H ,  + Hb 

Hb = Qoqi(d:di + 4) 
i 

Here d :  and d, are the local boson operators describing the departure of q, from (9); 
Qo = h(A/@)l’*, where h is the Planck constant, qkis the Fourier transform of q i  - cand 
r, is the radiusvector ofthe ith unit cell. The term containingB in equation (2 )  corrcsponds 
to the interaction introduced in [20-231. The term containing A describes the interaction 
of holes with local bosons. Note that the expression of (q) in terms of the present hole 
operators is of the form 

3. Boson self-energy 

Apart from the normal temperature Green functions Gk,(t) and Q(t) describing the 
above holes and bosons, respectively, we as usual introduce the abnormal Green func- 
tions F ,  I -, L ( t )  and F+,, L k  ( t )  which are complex conjugates to each other, are non- 
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zero only in the superconducting phase and describe the Cooper pairing of holes there 
[26]. In particular, 

The parameter r changes from - p  top, where T = 1,'s is the temperature measured in 
energy units; the label r denotes the ordering of operators [26]. 

First we consider the boson Green function D,(T). In the present paper we restrict 
ourselves to the calculation of only the critical temperature of the superconducting phase 
transition; therefore the contribution of the abnormal Green functions to the value of 
D,(r )  will be ignored in what follows. According to equation (2). the appropriate Dyson 
equation is then of the form 

F k T - X l  ( r ) = - ( ~ k ~ ( r ) ~ - k l ) c ~  

Here @(r)  is the Green function of non-interacting bosons, to which D,(7) tends at 
H = Ho. In equation (4) the renormalization of the vertex, which leads to corrections 
proportional to the small hole-boson interaction constant. i s  not taken into account. 
The further introduction of imaginary frequencies in equation (4) is performed in the 
conventional manner. As a result. we obtain the following solution for equation (4): 

D,(w,) = -2Qo/(wi + QSS,) 

s,=1+- 'c 'c. 'c Gkio(wn)Gkjo(wn + 

(5 )  
where 

A ~ Q ~ T  
(6) ,kNZ n = - 5  k) k? 

w, = 2nTm, w, = zT(2n + l) ,  and m and 11 are integers. To carry out the calculation 
in equation (6). we restrict ourselves t o  the leading order in the interaction parameter 
again. The sum over n is calculated by making use of the appropriate integral in the 
plane of complex frequencies. As a result, equation (6) takes the form 

For further calculations the form of the spectrum wk must be defined in detail. For 
simplicity here and below, we restrict ourselves to a parabolic spectrum with the uniaxial 
anisotropy: 

w k  = k;/2ml, + k:/2m, 

where kil and k ,  are the momentum components along and normal to the plane of 
anisotropy, respectively. and m, and m, are the appropriate effective hole masses. It is 
also convenient to make use of the formula 

lim[l/(x + i ~ ) ]  = P{l /x}  - irrS(x) (8) 
L-- 0 

where P{ }denotes that the Cauchy principal value of the appropriate integral must be 
considered and d(x) is the Dirac delta function. In the important particular case when 
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I I 

Figure 1. Behaviour ofthecharacteristic functidn 
A(x) describing the renormalization of the boson 0 o:u 0.Lx 08 energy. 

m+ 0, T +  0, which is predominant in what follows, from equation (7) for thevalue of 
So we obtain !he following expression: 

where 
So = 1 - (9A2Q4/Ut$ )A(h~/ho)  

h,  = EP’ ho = ( 3 / y ) ’ j 3  y = ~ m ~ @ n , ) ” ~ / n ~ f i ’  

A(x) = [(I - x4)/2] In[(l + x)/(l - x ) ]  - x(1 - x z )  

and U is the volume of the unit cell, which appears on transition to integrals over 
momenta. The shape of the function A(x) is shown in figure 1. 

The value of the renormalized boson energy as a function of the concentration c i s  
discussed below for several typical setsof values of the model parameters. It is important 
that such renormalization promotes the local character of the boson modes at hand on 
the energy axis. Their spatial locality also persists as can easily be shown. Note that the 
account of the distinction of the curvature parameter for the potential, when a hole 
resides at a copper ion, also promotes both the localization of the discussed boson modes 
and their separation from the regular phonon spectrum. 

4. Damping parameter of hole states 

The Dyson equations for the Green functions Gx , (z) and F Z k  1 t (T) can be written in 
a manner similar to (4). In the representation of imaginary frequencies the joint solution 
of these equations takes the form 

(9) 
Gry (w.1 =z.&/(IEknIZ + I A a 1 2 )  

F L ~ k ~ ( w n ) = A n / ( l E k n l ~  +IAn12) 

where 



188 E V Kholopov 

To calculate the last two terms in equation ( lo) ,  it is in order to note that these terms 
are small corrections, so that the unperturbed values may be used under the summation 
signs. It is also important that the real parts of these termsgive rise to small corrections 
to the value of sF and can be ignored within the accuracy to the leading order. As far as 
the appropriate imaginary parts are concerned, we restrict ourselves to the case of small 
n again. Then for the leading correction term we obtain from the third term on the right- 
hand side of equation (10) the following relationship: 

where equation (8) is taken into account. The sum over n in the last term of equation 
(10) can be calculated upon considering the appropriate integral on a plane of complex 
frequencies. On representing the self-energy part of the boson Green function approxi- 
mately in the form R ?  = R;S,,, in the limit PR % 1 we obtain the relationship 

The subsequent calculation of the integral over momenta can be performed directly. 
Finally. the value of E,,, in the non-superconducting phase in the case of small Iw,I and 
low temperatures is of the form 

Ekn = i[o, + S sgn(o.)] -f, (13) 
where 

6 = (nyQ4c/2){B'(I - c)hF + [A'Q~bexp(-PR)/AC2] 

x [(n + s ~ ) ~ / ~  + (cF - Q)IIZe(EF - Q)]}. 

S(EF - R )  is the Heaviside step function. 

5. Superconducting transition temperature 

The substitution of solution (9) into cquation (11) gives rise to the matching condition 
on the parameters A.. On taking account of equations (5) and (13) in the case of where 
S, =So,  the condition at the onset of superconductivity is represented in the form 

A" A'Q4RicT 
AN 2 BZQ4c(l - C) 

N k ( I w n / + s ) 2 + f : f  
A, = 
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Here the first term on the right-hand side corresponds to the channel of scattering from 
hole donors and was discussed in [ZO-U] where, however, the contribution of 6 was 
ignored. Asshown below, the latter contribution iscritical. It preventsinan independent 
way the possibility that superconducting instability arises because of this channel. 
Indeed, the term in question is proportional to A., with the coefficient of proportionality 
obtainedasin equation (12); it  can be combined with the left-hand sideof equation(l5). 
As a result, the equation for the superconducting transition temperature takes the form 

Thecalculationofthesumoverminequation (16)canbecarriedout in thesaniemanner 
aspreviously by considerationofthe appropriateintegralon acomplexfrequencyplane. 
However, there is a complication connected with the fact that the integrand is not a 
continuous function; therefore, two complex half-planes are to be considered. In each 
half-piane the integration is performed independently herein. As a result, in the case of 
0 < w, Q S? and 6 Q Q for the sum over m multiplied by Twe derive 

where do and 6, correspond to the first and second terms on the right-hand side of 
equation (14), respectively. It seems to be convenient to perform the further summation 
over k in (16) under the integral sign in equation (17), where integration over momenta 
is assumed. I n  this case the integrals over momenta and w may be calculated with the 
help of equation (8) independently. Thus to the leading order the result does not depend 
on the values of 6 ,  and 6,.  Hence, for the model of the superconducting pairing at 
random centres, the Anderson [ U ]  theorem is justified, i.e. the effects of scattering 
from these random centres do not affect the superconductivity to the leading order of 
the interaction parameter. On the other hand, the channel discussed in [2&23] gives the 
principal contribution to equation (16). although its effect is negligibly small in the 
adopted weak-coupling approximation. It is important here that the interactionsin both 
the channels are assumed to be of the same order of magnitude. The case of strong 
coupling requires special consideration, 

As a result of all the indicated transformations, in the limit PS? % 1, equation (16) 
can be represented in the following form: 

where the Cauchy principal value of the integral at hand is assumed. The expression of 
BCS type for the critical temperature following therefrom takes the form 

T,  = (8exp@cF/n)[(h0 - h F ) / ( h o  +hF)] ' jZ[ (n-  l ) / (n+  l)lW/'Wexp(-R) (18) 

where 
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F i ~ " = ~ Z . D c ~ e n d e " ~ s o f ~  = 1 0 0 Q ( e V ) ( ~ u ~ c ~ A ) a n d S ~  = lOO~,(eV)(curvesB)onthe 
concentration c lor the parameters in ( a )  set 1 and ( 6 )  set 2 ---, c = c. which restricts the 
repion of solutions. 

The following notation is introduced here: 
R = 2ASo/cA2Q"yhF C'= [(Q -k €F)/FF]"* 

y = I (8 - FF)/EF 1 '12 

IC is Euler's constant. For the limiting cases of the dependence (18) w'e have 

0 . 6 1 3 8 ~ ~  exp[(~/2)(Q/'eF)'i2 - RI 
1.30118[(1~~~ - hp)/ho - h ~ ] ' "  exp(-R) 

1.13398 exp( -R) 

6. Discussion 

Equation (18) contains apart from the initial model paramcters the set of quantities 
which are to be determined in the self-consistent manner as far as thcir concentration 
dependences are concerned. The case of low temperatures compared with the typical 
hole and boson energies is of importance. So the zero-temperature limit is iiistructive in 
what follows. For further estimates we adopt the following values of the parameters: 
A*/?, = 2 x 10" eV and, at the concentration c = 0.2, according to [13], Q = 0.1, T, = 
36.2K and yhF = I e V 1 .  We may, for example, consider the two sets of solutions 
corresponding to B,, = 20.6 eV, Q0 = 1000 K (set 1) and B, = 31.9 eV. Ro = 600 K (set 
2), which are in agreement waith the above experimental data at c = 0.2. 

According to (3), the predominant dependence of B on c is specified by the equation 

B(l + 2A2g5~3i?/Ah@"9'2) = B,, 

The particular feature of this equation is the absence of the solution when the con- 
centration is more than the critical value of c = 0.20021. which is almost the Same for 
both the above sets of data. The dependences of B and cF on c. which are connected 
with the behaviourof B(c) ,  areplottedin figure 2. Despitesomequantitativedistinction 
between the ratios E ~ / Q  for the two sets of data at the concentration c = 0.2, the 
comparable order of magnitude of the parameters cF and 8 still gives evidence of the 
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Figure3. T,(K) versus the Concentration c, which 
is the same for both sets of parameters: ---, 
c = e,. 

Figure 4. Dependence otthe critical temperature 
T, on the parameter hq= h,Jhm at the con- 
centration c = 0.2: ---. ho = 0.999 which is the 
boundary of the region of solutions. 

depression of the isotope effect [25]. It is also seen that the boson modes become softer 
upon increasingc. At the same time the local character of the boson modes in question 
excludes the appearance of any anomaly in the density of states, which could result in 
an additional enhancement of the critical temperature. The dependence of T, on c is 
shown in figure 3,  where within the scale of the picture it is the same for both sets of 
parametersconsidered. Hence, theobtainedresult isinsenritive tothechoiceofvaluesof 
the energy parameters within the adopted procedure of fitting them to the experimental 
data. The rather narrow concentration range where the values of T, are high enough is 
also a peculiar feature, which is in agreement with experiments [28]. It is worth noting 
that the weak-coupling condition on which equation (18) is based is fulfilled in all the 
concentration range, although thiscondition becomesless strong near the limitingvalues 
of T,. Making use of the momentum representation gives the averaged effect of the local 
bosons divided by shorter distances than the coherent length. 

Inasmuch as the values of Q and cF are of the same order of magnitude here, some 
comment is appropriate at this stage of the discussion. Low values of E~ are typical of 
modern high-T, superconductors [ I l l .  Hence, the effect of the Coulomb interaction is 
a common problem for all the theories of superconductivity here. In our case the non- 
trivial character of manifestation of the Coulomb interaction can be expected. Like the 
local specificity of boson modes, it is associated with the supposed localization of the 
hole charge that is natural for polarizing unit cells distributed at random in the crystal 
lattice. However, this problem requires special investigation. The present mechanism 
can be treated as some type of model [6] with negative-Ucentres. 

Thecharacterofthe dependenceof T,onthecut-offmomentumh,,isshown in figure 
4andseemsto berather instructive. Herewesee that thecurvesforbothsetsofsolutions 
coincide almost on the plane of reduced coordinates as well. The critical temperature 
attains its limiting value of max T, = 50 K at h,/h, = 0.999, where h, is the value of h, 
corresponding to the case of c = 0.2 for each set of data. I t  is interesting that the 
value of mas T, agrees with the maximal values obtained experimentally for lanthanum 



192 E V Kholopou 

ceramicsunder pressure [29,30). Some usefulinferencecan bederivedfromtheobtained 
dependence of T, on h,. Indeed, the effect of the trivial contraction of a substance must 
apparently lead to a broadening of the hole conduction band due to increasing overlap 
intcgrals and hence to an increase in h,). On the basis of the opposite experimental 
tendency [lo], we may maintain that conformal distortions appear in the case of longi- 
tudinal contraction of the oxygen layer as an element of the crystal structure, as will be 
discussed separately. 

It is important that another type of temperature behaviour is admitted by the above 
solution aswell. This takesplaceifsome fixedvalueof Q ismaintained [31].Then, upon 
increasingc, the bosonenergydropstozero,atwhichvalue thesystem becomesunstable. 
Theappropriate behaiourof  T,versuscisdescribed byacurve with amaximum, which 
is also experimentally confirmed [28]. I n  this case the corresponding curve with a 
maximum is typical for the dependence of T,on ho too. 

7. Conclusion 

So we see that the hole polarization of unit cells in which the balance of chemical 
valencies is broken is capable of affecting the system in different ways. First, a hole 
conductivity arises in the oxygen band. The hole transitions from donors to the band 
and vice versa result i n  a dynamical charge redistribution with the appropriate polar- 
ization effect leading to local boson modes with a rather high frequency although 
the latter has the tendency to soften. These boson modes can he responsible for the 
superconducting puiring of holes. Even in the simplest case of the lanthanum systems 
mentioned above. the high critical temperatures can be achieved for natural values of 
the parameters. The depression of the isotope effect compared with the conventional 
caseofthe purrelectron-phononinteraction isapeculiar featureoftheobtainedresults. 

In order to extend the present mechanism of superconductivity to more complicated 
metal oxide compounds. the representations developed in [32,33] would he useful, 
where the idea that competition of copper ions assites of hole polarization provides the 
random distribution and the local character of the excitations in question. 
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